Course specifications			
Programme(s) on which the course is given	B.Sc. of Pure		
Mathematics and			
Computer		Scien	
ce, Physics and CS			
Major or minor element of programs	Major		
Department offering the program	Mathematics		
Department offering the course		Mathematics	
Academic year / Level	First (4)		
Date of specification approval		September 2012	
A- Basic Information			
Title: Logic in compute science		Code:	
M4316			
Credit Hours: 4 hr. Lecture: 3 hr.			
Tutorial: 0 hr. Practical:	2	Total:	
4 hr.			
Teaching Staff			

B- Professional Information

1 – Overall aims of course

The course is intended as an introductory logic course in computer science. No previous experience with computer logic is required. Students are expected to be capable of understanding the logic of program evaluation. They will learn computational proofs with satisfiability problems.

- 2 Intended learning outcomes of course (ILOs)
- Knowledge and understanding:

The student should be able to;

a1. Know and understand, analysis, and prove the efficiency of a program,

a2- Explain the meaning of be able to use

predicate logic in defining an algorithm

a3. Recognize how to parse program logic tree and evaluate its efficiency.

• Intellectual skills

The student should be able to;

b1- Construct a program in predicate

.logic

.b2- Develop programs according to their efficiency b3- Apply appropriate different methods introduced in the course for suitable use in dealing with different . problems

• Professional and practical skills

The student should be able to;

c1- Specify definition of algorithms in predicate logic.

c2- Develop a rang of algorithms and prove its satisfiability.

c3- Specify the outcomes of the course through its use in practical application in

different scientific fields.

General and transferable skills

The student should be able to:

d1- Use with logic problems related to the topics covered in the course.

d2- Employ an extend and modification of the methods of the course for more complicated problems in program evaluation.

3- Contents

Торіс	No. of hours	Lect ure	Tutorial / Practica
			l
Introduction to	11	3	2
Propositional logic:			
declarative statements,			
natural deduction; Parse			
trees and truth tables			

	Dropositional lagia aga		11	2	2			
	Propositional logic as a		11	3	2			
	formal language. Semant							
	of propositional logic, and	a						
	mathematics induction,							
	Normal forms		11		•			
	Verification by model		11	3	2			
	checking: what is							
	verification, syntax of	-						
	computation tree logic, and	nd						
	semantics of CTL							
	Examples of CLTs as mu	tual	11	3	2			
	exclusion etc; model							
	checking algorithms							
	SMV system: modules,		8	2	2			
	fairness and alternatives	to						
	CTL							
4-	- Teaching and learning m	ethod	s					
	4.1 -Lectures							
4.2 -Working on hand in assignments								
4.3 - Attending practical classes								
5- Student assessment methods								
5.1 Mid term written exam to assess								
understanding competencies								
5.2 Mid term practical Exam to assess programming								
skills								
Oral Exam to assess 5.3								
attendance and interesting.								
Seme	ster hand in assignments	to ass	ess 5.4					
.unde	rstanding professionalism	1						
Final	lap exam t	to asse	ess a wl	nole 5	5.5			
lap sk	xills							
Final term written Exam to assess 5.6								
.comprehension								
Assessment schedule								

Assessment 1 Mid term + practical Week 7 Week 5 and 8 semester activities Assessment 2 Assessment 3 Final term oral exam + lap Week 13 final term written exam Assessment 4 Week 14 Weighting of assessments **Mid-Term Examination** 20% **Semester Work** (homework assignments + oral tests) 20 % Other types of assessment 00%

Final-term written Examination

60%

Total

100%

Any formative only assessments

6- List of references

6.1- Course notes

Collected and prepared notes that cover the main topics

in the course content

6.2- Essential books (text books)

Elementary text books under the title : *Logic in*

Computer Science Modeling and Reasoning About Systems

6.3- Recommended books :

6.4- Periodicals, Web sites, ... etc Non.

7- Facilities required for teaching and learning

Lecture: PC's - packages for ready made scientific programs. - Data Show

Lap: lap contains all the tools, instrumentation, and packages.

Course coordinator:

Head of Department: Prof. Dr. Mohamed A. Ramadan

Date: / /